• DocumentCode
    1828958
  • Title

    A Class of Fractal Soliton Structure for a Nonlinear Broer-Kaup System

  • Author

    Li, Bangqing ; Li, Yuehui ; Ma, Yulan

  • Author_Institution
    Dept. of Comput. Sci. & Eng., Beijing Technol. & Bus. Univ., Beijing, China
  • fYear
    2010
  • fDate
    15-16 May 2010
  • Firstpage
    180
  • Lastpage
    183
  • Abstract
    By selecting proper functions involved in the known non-traveling wave solution with variable separation, a class of fractal soliton structure is investigated for a nonlinear Broer-Kaup system. The fractal soliton structure can hold its similarity in different scales.
  • Keywords
    fractals; nonlinear dynamical systems; solitons; fractal soliton structure; nonlinear Broer-Kaup system; nonlinear dynamical systems; nontraveling wave solution; Fractals; Mathematical model; Polynomials; Silicon compounds; Solitons; fractal soliton structure; non-traveling wave solution; nonlinear Broer-Kaup system; variable separation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Modeling, Simulation and Visualization Methods (WMSVM), 2010 Second International Conference on
  • Conference_Location
    Sanya
  • Print_ISBN
    978-1-4244-7077-8
  • Electronic_ISBN
    978-1-4244-7078-5
  • Type

    conf

  • DOI
    10.1109/WMSVM.2010.61
  • Filename
    5558325