Title :
Fall detection using an address-event temporal contrast vision sensor
Author :
Fu, Zhengming ; Culurciello, Eugenio ; Lichtsteiner, Patrick ; Delbruck, Tobi
Author_Institution :
Electr. Eng. Dept., Yale Univ., New Haven, CT
Abstract :
In this paper we describe an address-event vision system designed to detect accidental falls in elderly home care applications. The system raises an alarm when a fall hazard is detected. We use an asynchronous temporal contrast vision sensor which features sub-millisecond temporal resolution. A lightweight algorithm computes an instantaneous motion vector and reports fall events. We are able to distinguish fall events from normal human behavior, such as walking, crouching down, and sitting down. Our system is robust to the monitored person´s spatial position in a room and presence of pets.
Keywords :
image sensors; address-event vision system; fall detection; fall hazard detection; home care; normal human behavior; spatial position; temporal contrast vision sensor; Hazards; Humans; Legged locomotion; Machine vision; Monitoring; Positron emission tomography; Robustness; Senior citizens; Sensor phenomena and characterization; Spatial resolution;
Conference_Titel :
Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on
Conference_Location :
Seattle, WA
Print_ISBN :
978-1-4244-1683-7
Electronic_ISBN :
978-1-4244-1684-4
DOI :
10.1109/ISCAS.2008.4541445