DocumentCode :
1832437
Title :
Max-min encoding learning algorithm for fuzzy max-multiplication associative memory networks
Author :
Xiao, Ping ; Yang, Feng ; Yu, Yinglin
Author_Institution :
Res. Inst. of Radio & Autom., South China Univ. of Technol., Guangzhou, China
Volume :
4
fYear :
1997
fDate :
12-15 Oct 1997
Firstpage :
3674
Abstract :
This paper proposes a kind of algorithm, called max-min encoding learning algorithm, for fuzzy max-multiplication (in short FMM) associative memory networks. The new method can store all auto-associative memory samples. Based on the max-min encoding, a kind of gradient descent learning method is presented to be identified as the connection weight for FMM hetero-associative memory networks. The simulation shows the effectiveness of the method
Keywords :
content-addressable storage; encoding; fuzzy neural nets; learning (artificial intelligence); auto-associative memory samples; fuzzy max-multiplication associative memory networks; gradient descent learning method; max-min encoding learning algorithm; Approximation algorithms; Associative memory; Differential equations; Encoding; Fuzzy logic; Fuzzy neural networks; Fuzzy systems; Inference algorithms; Neural networks; Neurons;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on
Conference_Location :
Orlando, FL
ISSN :
1062-922X
Print_ISBN :
0-7803-4053-1
Type :
conf
DOI :
10.1109/ICSMC.1997.633240
Filename :
633240
Link To Document :
بازگشت