• DocumentCode
    1848992
  • Title

    New throughput bounds for closed networks

  • Author

    Morrison, James R. ; Kumar, P.R.

  • Author_Institution
    Univ. of Illinois, Champaign, IL, USA
  • Volume
    1
  • fYear
    1999
  • fDate
    1999
  • Firstpage
    1033
  • Abstract
    An approach to obtaining performance bounds in closed reentrant lines based on an inequality relaxation of the average cost equation is presented. The approach consists of choosing certain simple functions to serve as a surrogate for the differential cost function. Appealing to the transition invariance of a Markov chain modeling the line one can deduce linear programs which provide performance bounds. Functional bounds and an efficiency test are obtained by proposing a functional form for the surrogate of the differential cost function. We develop the linear program bounds for the class of buffer priority policies
  • Keywords
    Markov processes; exponential distribution; graph theory; linear programming; queueing theory; scheduling; Markov chain; average cost equation; buffer priority policies; closed networks; closed reentrant lines; differential cost function; efficiency test; functional bounds; inequality relaxation; performance bounds; throughput bounds; transition invariance; Contracts; Cost function; Equations; Linear programming; Probability distribution; Scheduling; Stability; State-space methods; Testing; Throughput;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1999. Proceedings of the 38th IEEE Conference on
  • Conference_Location
    Phoenix, AZ
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-5250-5
  • Type

    conf

  • DOI
    10.1109/CDC.1999.832931
  • Filename
    832931