DocumentCode :
1849871
Title :
Hyperspectral data deconvolution for galaxy kinematics with MCMC
Author :
Villeneuve, Emma ; Carfantan, Hervé
Author_Institution :
IRAP, Univ. de Toulouse, Toulouse, France
fYear :
2012
fDate :
27-31 Aug. 2012
Firstpage :
2477
Lastpage :
2481
Abstract :
The development of hyperspectral instruments requires new methods for data processing and analysis. We focus in this work on the estimation of the flux, position and width of spectral lines from astrophysical data, necessary to study the kinematics of galaxies. Classically used estimation methods, such as the methodof moments and the maximum likelihood (ML), neglect the effect of the spatial Point Spread Function of the data acquisition system. The aim of this paper is to propose 3D deconvolution methods: the first is based on the ML estimator; a second introduces weak priors on the parameters and computes the posterior mean estimator with a Monte-Carlo Markov Chain, using a hybrid Gibbs/Metropolis-Hastings algorithm. The methods are compared on simulated hyperspectral data and the latter is shown to give the best results, in particular in the case of a low signal to noise ratio.
Keywords :
astronomical techniques; galaxies; 3D deconvolution methods; Monte-Carlo Markov Chain; astrophysical data; classically used estimation methods; data acquisition system; data analysis; data processing; galaxy kinematics; hybrid Gibbs-Metropolis-Hastings algorithm; hyperspectral data; hyperspectral data deconvolution; hyperspectral instrument development; maximum likelihood; signal-to-noise ratio; spatial point spread function; spectral line flux; spectral line position; spectral line width; Deconvolution; Hyperspectral imaging; Maximum likelihood estimation; Signal to noise ratio; Deconvolution; Gibbs sampler; MCMC; emission line; estimation; galaxy kinematics; hyperspectral data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European
Conference_Location :
Bucharest
ISSN :
2219-5491
Print_ISBN :
978-1-4673-1068-0
Type :
conf
Filename :
6333973
Link To Document :
بازگشت