DocumentCode :
1859443
Title :
Estimating sparse models from multivariate discrete data via transformed Lasso
Author :
Roos, Teemu ; Yu, Bin
Author_Institution :
Helsinki Inst. for Inf. Technol. HIIT, Univ. of Helsinki & Helsinki Univ. of Technol., Helsinki
fYear :
2009
fDate :
8-13 Feb. 2009
Firstpage :
290
Lastpage :
294
Abstract :
The type of lscr1 norm regularization used in Lasso and related methods typically yields sparse parameter estimates where most of the estimates are equal to zero. We study a class of estimators obtained by applying a linear transformation on the parameter vector before evaluating the lscr1 norm. The resulting ldquotransformed Lassordquo yields estimates that are ldquosmoothrdquo in a way that depends on the applied transformation. The optimization problem is convex and can be solved efficiently using existing tools. We present two examples: the Haar transform which corresponds to variable length Markov chain (context-tree) models, and the Walsh-Hadamard transform which corresponds to linear combinations of XOR (parity) functions of binary input features.
Keywords :
Haar transforms; Hadamard transforms; Markov processes; Walsh functions; modelling; Haar transform; Walsh-Hadamard transform; convex optimization problem; lscr1 norm regularization; multivariate discrete data; parameter vector; sparse models; transformed Lasso; variable length Markov chain model; Accuracy; Bayesian methods; Concrete; Context modeling; Logistics; Parameter estimation; Predictive models; Statistics; Vectors; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory and Applications Workshop, 2009
Conference_Location :
San Diego, CA
Print_ISBN :
978-1-4244-3990-4
Type :
conf
DOI :
10.1109/ITA.2009.5044959
Filename :
5044959
Link To Document :
بازگشت