• DocumentCode
    1870522
  • Title

    Unsupervised change detection in the feature space using kernels

  • Author

    Volpi, Michele ; Tuia, Devis ; Camps-Valls, G. ; Kanevski, Mikhail

  • Author_Institution
    Inst. of Geomatics & Anal. of Risk, Univ. of Lausanne, Lausanne, Switzerland
  • fYear
    2011
  • fDate
    24-29 July 2011
  • Firstpage
    106
  • Lastpage
    109
  • Abstract
    In this paper we propose an unsupervised approach to change detection by computing the difference image directly in the feature spaces. The resulting difference kernel, that is a combination of kernels computed on the coregistered and radiometrically matched input images, is used to train a nonlinear partitioning algorithm. In order to apply the kernel k-means, issues related to the initialization and to the tuning of parameters (e.g. the Gaussian RBF bandwidth) are considered. To validate the proposed unsupervised algorithm, two multitemporal VHR remote sensing images are used.
  • Keywords
    feature extraction; geophysical image processing; image matching; image resolution; management of change; remote sensing; tuning; unsupervised learning; feature space; kernel k-means algorithm; kernels combination; multitemporal VHR remote sensing image; nonlinear partitioning algorithm; parameter tuning; radiometrically matched input image; unsupervised change detection; Algorithm design and analysis; Change detection algorithms; Clustering algorithms; Feature extraction; Kernel; Partitioning algorithms; Remote sensing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International
  • Conference_Location
    Vancouver, BC
  • ISSN
    2153-6996
  • Print_ISBN
    978-1-4577-1003-2
  • Type

    conf

  • DOI
    10.1109/IGARSS.2011.6048909
  • Filename
    6048909