• DocumentCode
    1880280
  • Title

    Automatic relevance feedback for video retrieval

  • Author

    Muneesawang, P. ; Guan, L.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Naresuan Univ., Phisanulok, Thailand
  • Volume
    2
  • fYear
    2003
  • fDate
    6-9 July 2003
  • Abstract
    This paper presents an automatic relevance feedback method for improving retrieval accuracy in video database. We first demonstrate a representation based on a template-frequency model (TFM) that allows the full use of the temporal dimension. We then integrate the TFM with a self-training neural network structure to adaptively capture different degrees of visual importance in a video sequence. Forward and backward signal propagation is the key in this automatic relevance feedback method in order to enhance retrieval accuracy.
  • Keywords
    image retrieval; image sequences; neural nets; relevance feedback; video databases; automatic relevance feedback method; backward signal propagation; forward signal propagation; self-training neural network; template-frequency model; video database; video sequence; Data engineering; Feedback; Indexing; Information retrieval; Multimedia databases; Neural networks; Neurofeedback; Radio frequency; Video sequences; Visual databases;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 International Conference on
  • Print_ISBN
    0-7803-7965-9
  • Type

    conf

  • DOI
    10.1109/ICME.2003.1221631
  • Filename
    1221631