Title :
Learning-based adaptive control for nonlinear systems
Author :
Benosman, Mouhacine
Author_Institution :
Mitsubishi Electr. Res. Labs., Cambridge, MA, USA
Abstract :
We present in this paper a preliminary result on learning-based adaptive trajectory tracking control for nonlinear systems. We propose, for the class of nonlinear systems with parametric uncertainties which can be rendered integral Input-to-State stable w.r.t. the parameter estimation errors input, that it is possible to merge together the integral Input-to-State stabilizing feedback controller and a model-free extremum seeking (ES) algorithm to realize a learning-based adaptive controller. We show the efficiency of this approach on a mechatronic example.
Keywords :
adaptive control; learning systems; nonlinear control systems; optimal control; parameter estimation; state feedback; trajectory control; uncertain systems; integral input-to-state stabilizing feedback controller; learning-based adaptive controller; learning-based adaptive trajectory tracking control; model-free ES algorithm; model-free extremum seeking algorithm; nonlinear systems; parameter estimation errors; parametric uncertainties; Adaptation models; Adaptive control; Cost function; Nonlinear systems; Trajectory; Uncertainty; Vectors;
Conference_Titel :
Control Conference (ECC), 2014 European
Conference_Location :
Strasbourg
Print_ISBN :
978-3-9524269-1-3
DOI :
10.1109/ECC.2014.6862378