DocumentCode :
1894001
Title :
A data-driven HAAR-FISZ transform for multiscale variance stabilization
Author :
Fryzlewicz, P. ; Delouille, V.
Author_Institution :
Dept. of Math., Imperial Coll. London
fYear :
2005
fDate :
17-20 July 2005
Firstpage :
539
Lastpage :
544
Abstract :
We propose a data-driven Haar Fisz transform (DDHFT): a fast, fully automatic, multiscale technique for approximately Gaussianising and stabilizing the variance of sequences of non-negative independent random variables whose variance is a non-decreasing (but otherwise unknown) function of the mean. We demonstrate the excellent performance of the DDHFT on Poisson data. We then use the DDHFT to denoise a solar irradiance time series recorded by the X-ray radiometer on board the GOES satellite: as the noise distribution is unknown, we first take the DDHFT, then use a standard wavelet technique for homogeneous Gaussian data, and then take the inverse DDHFT. The procedure is shown to significantly outperform its competitors
Keywords :
Gaussian processes; Haar transforms; signal denoising; time series; wavelet transforms; DDHFT; GOES satellite; Poisson data; X-ray radiometer; data-driven Haar Fisz transform; denoising procedure; homogeneous Gaussian data; independent random variable; multiscale variance stabilization; solar irradiance time series; standard wavelet technique; Discrete transforms; Educational institutions; Gaussian approximation; Gaussian noise; Mathematics; Noise reduction; Observatories; Radiometry; Random variables; Satellite broadcasting;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on
Conference_Location :
Novosibirsk
Print_ISBN :
0-7803-9403-8
Type :
conf
DOI :
10.1109/SSP.2005.1628654
Filename :
1628654
Link To Document :
بازگشت