DocumentCode :
1898993
Title :
Analysis of SST images by weighted Ensemble Transform Kalman Filter
Author :
Gorthi, Sai Subrahmanyam ; Beyou, Sébastien ; Mémin, Étienne
Author_Institution :
INRIA Rennes Bretagne-Atlantique, Rennes, France
fYear :
2011
fDate :
24-29 July 2011
Firstpage :
4172
Lastpage :
4175
Abstract :
This paper presents a novel, efficient scheme for the analysis of Sea Surface Temperature (SST) ocean images. We consider the estimation of the velocity fields and vorticity values from a sequence of oceanic images. The contribution of this paper lies in proposing a novel, robust and simple approach based on Weighted Ensemble Transform Kalman filter (WETKF) data assimilation technique for the analysis of real SST images, that may contain coast regions or large areas of missing data due to the cloud cover.
Keywords :
Kalman filters; geophysical image processing; image sequences; ocean temperature; oceanographic techniques; vortices; SST image; cloud cover; coast region; ocean images; sea surface temperature; velocity field; vorticity value; weighted ensemble transform Kalman filter; Data assimilation; Kalman filters; Mathematical model; Oceans; Sea measurements; Transforms; Uncertainty; Data assimilation; Ensemble Kalman filters; Image motion analysis; Particle filters;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International
Conference_Location :
Vancouver, BC
ISSN :
2153-6996
Print_ISBN :
978-1-4577-1003-2
Type :
conf
DOI :
10.1109/IGARSS.2011.6050049
Filename :
6050049
Link To Document :
بازگشت