DocumentCode :
1908361
Title :
VLS-grown silicon nanowires — Dopant deactivation and tunnel FETs
Author :
Björk, M.T. ; Moselund, K.E. ; Schmid, H. ; Ghoneim, H. ; Karg, S. ; Lörtscher, E. ; Knoch, J. ; Riess, W. ; Riel, H.
Author_Institution :
Zurich Res. Lab., IBM Res. GmbH, Rüschlikon, Switzerland
fYear :
2010
fDate :
13-14 June 2010
Firstpage :
1
Lastpage :
2
Abstract :
Today, the continued miniaturization of field effect transistors (FETs) results in major scaling issues that curtail further voltage reduction. The resultant increase in power consumption density limits the overall performance. Therefore, alternative materials and devices are required that support steep sub-threshold slopes and low-voltage operation. The tunnel FET (TFET) is regarded as the most promising candidate because it is based on gate-controlled band-to-band tunneling in a p-i-n+ structure and thus can break the 60 mV/dec limit of conventional FETs. Implementing the TFET principle in the nanowire (NW) geometry provides optimum electrostatic control. Here we demonstrate controlled in-situ doping of silicon (Si) NWs, the effect of scaling on the active number of doping atoms in the NW and the implementation of a Si NW TFET.
Keywords :
field effect transistors; low-power electronics; nanowires; p-i-n diodes; power consumption; semiconductor doping; tunnel transistors; VLS-grown silicon nanowire; dopant deactivation; field effect transistor; gate-controlled band-to-band tunneling; low-voltage operation; nanowire geometry; optimum electrostatic control; p-i-n+ structure; power consumption density; silicon doping; sub-threshold slope; tunnel FET; vapor-liquid-solid method; voltage reduction; Conductivity; Dielectrics; Doping; FETs; Logic gates; Silicon; Wire;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Silicon Nanoelectronics Workshop (SNW), 2010
Conference_Location :
Honolulu, HI
Print_ISBN :
978-1-4244-7727-2
Electronic_ISBN :
978-1-4244-7726-5
Type :
conf
DOI :
10.1109/SNW.2010.5562587
Filename :
5562587
Link To Document :
بازگشت