• DocumentCode
    1908442
  • Title

    Hierarchical least squares parameter estimation algorithms for dual-rate sampled-data systems

  • Author

    Ding, Jie ; Ding, Feng ; Liu, Peter X.

  • Author_Institution
    Control Sci. & Eng. Res. Center, Jiangnan Univ., Wuxi
  • fYear
    2008
  • fDate
    12-15 May 2008
  • Firstpage
    536
  • Lastpage
    541
  • Abstract
    In this paper, we combine the hierarchical identification principle with the least square algorithm to identify the parameters of dual-rate sampled-data systems. The hierarchical identification principle is to decompose the identification model of dual-rate systems to several identification sub-models with smaller dimensions and fewer parameters to be estimated, and to present the hierarchical least squares identification algorithm with less computation efforts. We prove the convergence of the algorithm proposed. The simulation example is included.
  • Keywords
    convergence of numerical methods; least squares approximations; parameter estimation; sampled data systems; convergence; dual-rate sampled-data systems; hierarchical identification principle; least squares parameter estimation; Computational modeling; Convergence; Equations; Instrumentation and measurement; Least squares approximation; Least squares methods; Parameter estimation; Polynomials; Sampling methods; Signal processing; Recursive identification; convergence properties; dual-rate systems; least squares; parameter estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Instrumentation and Measurement Technology Conference Proceedings, 2008. IMTC 2008. IEEE
  • Conference_Location
    Victoria, BC
  • ISSN
    1091-5281
  • Print_ISBN
    978-1-4244-1540-3
  • Electronic_ISBN
    1091-5281
  • Type

    conf

  • DOI
    10.1109/IMTC.2008.4547095
  • Filename
    4547095