DocumentCode
1908442
Title
Hierarchical least squares parameter estimation algorithms for dual-rate sampled-data systems
Author
Ding, Jie ; Ding, Feng ; Liu, Peter X.
Author_Institution
Control Sci. & Eng. Res. Center, Jiangnan Univ., Wuxi
fYear
2008
fDate
12-15 May 2008
Firstpage
536
Lastpage
541
Abstract
In this paper, we combine the hierarchical identification principle with the least square algorithm to identify the parameters of dual-rate sampled-data systems. The hierarchical identification principle is to decompose the identification model of dual-rate systems to several identification sub-models with smaller dimensions and fewer parameters to be estimated, and to present the hierarchical least squares identification algorithm with less computation efforts. We prove the convergence of the algorithm proposed. The simulation example is included.
Keywords
convergence of numerical methods; least squares approximations; parameter estimation; sampled data systems; convergence; dual-rate sampled-data systems; hierarchical identification principle; least squares parameter estimation; Computational modeling; Convergence; Equations; Instrumentation and measurement; Least squares approximation; Least squares methods; Parameter estimation; Polynomials; Sampling methods; Signal processing; Recursive identification; convergence properties; dual-rate systems; least squares; parameter estimation;
fLanguage
English
Publisher
ieee
Conference_Titel
Instrumentation and Measurement Technology Conference Proceedings, 2008. IMTC 2008. IEEE
Conference_Location
Victoria, BC
ISSN
1091-5281
Print_ISBN
978-1-4244-1540-3
Electronic_ISBN
1091-5281
Type
conf
DOI
10.1109/IMTC.2008.4547095
Filename
4547095
Link To Document