DocumentCode
1908972
Title
Stochastic gradient parameter estimation of input nonlinear systems using the filtering technique
Author
Wang, Dongqing ; Ding, Feng ; Sun, Shouqing
Author_Institution
Coll. of Autom. Eng., Qingdao Univ., Qingdao, China
fYear
2011
fDate
23-26 May 2011
Firstpage
374
Lastpage
378
Abstract
For input nonlinear output error moving average systems with a two-segment piecewise nonlinearity, a data filtering based stochastic gradient algorithm is developed to estimate the parameters of this nonlinear system based on the data filtering. The basic idea is to combine the key-term separation principle and the data filtering technique, and to decompose the identification model into two models. The simulation results indicate that the proposed algorithm can give more accurate parameter estimates than existing extended stochastic gradient algorithm.
Keywords
filtering theory; gradient methods; nonlinear systems; parameter estimation; stochastic processes; Hammerstein model; data filtering; identification model; input nonlinear output error moving average system; key-term separation principle; stochastic gradient parameter estimation; two-segment piecewise nonlinearity; Computational modeling; Digital signal processing; Mathematical model; Nonlinear systems; Parameter estimation; Signal processing algorithms; Stochastic processes; Hammerstein models; auxiliary model; key-term separation principle; output error moving average model; stochastic gradient;
fLanguage
English
Publisher
ieee
Conference_Titel
Advanced Control of Industrial Processes (ADCONIP), 2011 International Symposium on
Conference_Location
Hangzhou
Print_ISBN
978-1-4244-7460-8
Electronic_ISBN
978-988-17255-0-9
Type
conf
Filename
5930456
Link To Document