• DocumentCode
    1908972
  • Title

    Stochastic gradient parameter estimation of input nonlinear systems using the filtering technique

  • Author

    Wang, Dongqing ; Ding, Feng ; Sun, Shouqing

  • Author_Institution
    Coll. of Autom. Eng., Qingdao Univ., Qingdao, China
  • fYear
    2011
  • fDate
    23-26 May 2011
  • Firstpage
    374
  • Lastpage
    378
  • Abstract
    For input nonlinear output error moving average systems with a two-segment piecewise nonlinearity, a data filtering based stochastic gradient algorithm is developed to estimate the parameters of this nonlinear system based on the data filtering. The basic idea is to combine the key-term separation principle and the data filtering technique, and to decompose the identification model into two models. The simulation results indicate that the proposed algorithm can give more accurate parameter estimates than existing extended stochastic gradient algorithm.
  • Keywords
    filtering theory; gradient methods; nonlinear systems; parameter estimation; stochastic processes; Hammerstein model; data filtering; identification model; input nonlinear output error moving average system; key-term separation principle; stochastic gradient parameter estimation; two-segment piecewise nonlinearity; Computational modeling; Digital signal processing; Mathematical model; Nonlinear systems; Parameter estimation; Signal processing algorithms; Stochastic processes; Hammerstein models; auxiliary model; key-term separation principle; output error moving average model; stochastic gradient;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Advanced Control of Industrial Processes (ADCONIP), 2011 International Symposium on
  • Conference_Location
    Hangzhou
  • Print_ISBN
    978-1-4244-7460-8
  • Electronic_ISBN
    978-988-17255-0-9
  • Type

    conf

  • Filename
    5930456