DocumentCode :
1912482
Title :
Parametric and distribution-free bootstrapping in robust simulation-optimization
Author :
Dellino, Gabriella ; Kleijnen, Jack P C ; Meloni, Carlo
Author_Institution :
Dept. of Inf. Eng., Univ. of Siena, Siena, Italy
fYear :
2010
fDate :
5-8 Dec. 2010
Firstpage :
1283
Lastpage :
1294
Abstract :
Most methods in simulation-optimization assume known environments, whereas this research accounts for uncertain environments combining Taguchi´s world view with either regression or Kriging (also called Gaussian Process) metamodels (emulators, response surfaces, surrogates). These metamodels are combined with Non-Linear Mathematical Programming (NLMP) to find robust solutions. Varying the constraint values in this NLMP gives an estimated Pareto frontier. To account for the variability of this estimated Pareto frontier, this contribution considers different bootstrap methods to obtain confidence regions for a given solution. This methodology is illustrated through some case studies selected from the literature.
Keywords :
Gaussian processes; Taguchi methods; nonlinear programming; regression analysis; Gaussian process; Kriging metamodels; Pareto frontier estimation; Taguchi world view; distribution-free bootstrapping; nonlinear mathematical programming; regression metamodel; robust simulation-optimization; Biological system modeling; Computational modeling; Environmental factors; Mathematical model; Polynomials; Predictive models; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Simulation Conference (WSC), Proceedings of the 2010 Winter
Conference_Location :
Baltimore, MD
ISSN :
0891-7736
Print_ISBN :
978-1-4244-9866-6
Type :
conf
DOI :
10.1109/WSC.2010.5679064
Filename :
5679064
Link To Document :
بازگشت