DocumentCode
19209
Title
A Stress Concentration MOSFET Structure
Author
Xiangzhan Wang ; Qingping Zeng ; Bin Liu ; Cheng Gan ; Qian Luo ; Qi Yu ; Yang Liu ; Kaizhou Tan ; Xianwei Ying
Author_Institution
State Key Lab. of Electron. Thin Films & Integrated Devices, Univ. of Electron. Sci. & Technol. of China, Chengdu, China
Volume
61
Issue
1
fYear
2014
fDate
Jan. 2014
Firstpage
207
Lastpage
211
Abstract
A MOSFET using a stress concentration (SC) structure to enhance the channel stress in strained MOSFETs is proposed. The nMOSFETs with gate length varying from 15 to 350 nm are simulated to investigate the effects of SC. For devices strained by tensile contact etching stop layer, over 12% driving current improvement better than that of conventional strained devices has been achieved. The method for introducing SC is effective for both short-and long-channel device.
Keywords
MOSFET; etching; internal stresses; CESL; MOSFET; channel stress; size 15 nm to 350 nm; stress concentration structure; tensile contact etching stop layer; Deformable models; Educational institutions; Logic gates; MOSFET; Semiconductor process modeling; Silicon; Stress; Contact etching stop layer (CESL); nanoscale MOSFET; strained Si; stress concentration;
fLanguage
English
Journal_Title
Electron Devices, IEEE Transactions on
Publisher
ieee
ISSN
0018-9383
Type
jour
DOI
10.1109/TED.2013.2292545
Filename
6680688
Link To Document