DocumentCode :
1923568
Title :
Hidden-data spaces for maximum-likelihood PET reconstruction
Author :
Fessler, Jeffrey A.
Author_Institution :
Div. of Nucl. Med., Michigan, Ann Arbor, MI, USA
fYear :
1992
fDate :
25-31 Oct 1992
Firstpage :
898
Abstract :
The author shows that expectation-maximization (EM) algorithms based on smaller complete data spaces will typically converge faster. As an example, he compares the two maximum-likelihood (ML) image reconstruction algorithms of D. G. Politte and D. L. Snyder (1991) which are based on measurement models that account for attenuation and accidental coincidences in positron-emission tomography (PET)
Keywords :
computerised tomography; image reconstruction; medical image processing; radioisotope scanning and imaging; accidental coincidences; attenuation; complete data spaces; convergence; expectation-maximization algorithms; hidden-data spaces; maximum-likelihood PET reconstruction; maximum-likelihood image reconstruction algorithms; measurement models; medical diagnostic imaging; nuclear medicine; positron-emission tomography; Attenuation measurement; Convergence; Density measurement; Image converters; Image reconstruction; Maximum likelihood estimation; Nuclear medicine; Parameter estimation; Positron emission tomography; US Department of Energy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nuclear Science Symposium and Medical Imaging Conference, 1992., Conference Record of the 1992 IEEE
Conference_Location :
Orlando, FL
Print_ISBN :
0-7803-0884-0
Type :
conf
DOI :
10.1109/NSSMIC.1992.301014
Filename :
301014
Link To Document :
بازگشت