DocumentCode :
1959380
Title :
Empirical Mode Decomposition for rotation invariant texture classification
Author :
Changzhen, Xiong ; Fenhong, Guo
Author_Institution :
Lab. of Intell. Transp. Syst., North China Univ. of Technol., Beijing, China
fYear :
2009
fDate :
23-26 Aug. 2009
Firstpage :
551
Lastpage :
554
Abstract :
A novel and effective scheme for rotation invariant texture classification is presented using an adaptive and approximately orthogonal filtering process-bidimensional empirical mode decomposition (BEMD). The extraction of rotation invariant feature for a given image involves BEMD and circular zones. A feature vector extracted from circular zones of intrinsic mode function (IMF) is constructed for rotation invariant texture classification. In the experiments, we use rotation invariant feature to classify a set of 25 distinct natural textures selected from the Brodatz album. The experimental results show that the effectiveness of the proposed classification scheme compared with other classification methods.
Keywords :
adaptive filters; feature extraction; image classification; image texture; Brodatz album; adaptive filtering process; approximately orthogonal filtering process; bidimensional empirical mode decomposition; feature vector extraction; intrinsic mode function; rotation invariant feature extraction; rotation invariant texture classification; Adaptive filters; Data mining; Discrete wavelet transforms; Feature extraction; Frequency; Gabor filters; Image processing; Intelligent transportation systems; Signal processing; Wavelet packets;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, Computers and Signal Processing, 2009. PacRim 2009. IEEE Pacific Rim Conference on
Conference_Location :
Victoria, BC
Print_ISBN :
978-1-4244-4560-8
Electronic_ISBN :
978-1-4244-4561-5
Type :
conf
DOI :
10.1109/PACRIM.2009.5291310
Filename :
5291310
Link To Document :
بازگشت