• DocumentCode
    1968295
  • Title

    Signal processing with factor graphs: Beamforming and Hilbert transform

  • Author

    Loeliger, Hans-Andrea ; Reller, C.

  • Author_Institution
    Dept. of Inf. Technol. & Electr. Eng., ETH Zurich, Zurich, Switzerland
  • fYear
    2013
  • fDate
    10-15 Feb. 2013
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    Continuous-time linear state space models with discrete-time observations enable digital estimation of continuous-time signals with arbitrary temporal resolution by means of Kalman filtering/smoothing or Gaussian message passing in the corresponding factor graph. In this paper, we demonstrate the application of this approach to time-domain sensor array processing and to an emulation of the Hilbert transform.
  • Keywords
    Hilbert transforms; Kalman filters; array signal processing; graph theory; message passing; smoothing methods; time-domain analysis; Gaussian message passing; Hilbert transform; Kalman filtering; Kalman smoothing; arbitrary temporal resolution; beamforming; continuous-time linear state space models; digital continuous-time signal estimation; discrete-time observations; factor graphs; signal processing; time-domain sensor array processing; Array signal processing; Computational modeling; Estimation; Kalman filters; Transforms; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory and Applications Workshop (ITA), 2013
  • Conference_Location
    San Diego, CA
  • Print_ISBN
    978-1-4673-4648-1
  • Type

    conf

  • DOI
    10.1109/ITA.2013.6502952
  • Filename
    6502952