DocumentCode :
1975378
Title :
Analysis of a Hurst parameter estimator based on the modified Allan variance
Author :
Bianchi, Alberto ; Bregni, Stefano ; Crimaldi, I. ; Ferrari, Mauro
Author_Institution :
Dept. of Math., Univ. of Padua, Padua, Italy
fYear :
2012
fDate :
3-7 Dec. 2012
Firstpage :
1716
Lastpage :
1721
Abstract :
In order to estimate the Hurst parameter of Internet traffic data, it has been recently proposed a log-regression estimator based on the so-called modified Allan variance (MAVAR). Simulations have shown that this estimator achieves higher accuracy and better confidence when compared with an other method of common use based on wavelet analysis. Here we link it to the wavelets setting and stress why a different analysis for the two approaches is required. We then focus on the asymptotic analysis of the MAVAR log-regression estimator and provide new formulas for the related confidence intervals. By numerical evaluation, we analyze these formulas and make a comparison between three suitable choices on the regression weights, also optimizing over different choices on the data progression.
Keywords :
Internet; numerical analysis; parameter estimation; regression analysis; telecommunication traffic; Hurst parameter estimator analysis; Internet traffic data; MAVAR; asymptotic analysis; data progression; log-regression estimator; modified Allan variance; numerical evaluation; regression weights; wavelet analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Global Communications Conference (GLOBECOM), 2012 IEEE
Conference_Location :
Anaheim, CA
ISSN :
1930-529X
Print_ISBN :
978-1-4673-0920-2
Electronic_ISBN :
1930-529X
Type :
conf
DOI :
10.1109/GLOCOM.2012.6503362
Filename :
6503362
Link To Document :
بازگشت