Author_Institution :
Department of Mathematics, University of Bielefeld, POB 100131, D-33501 Bielefeld, Germany, Email: ahlswede@math.uni-bielefeld.de
Abstract :
In the last century together with Levon Khachatrian we established a diametric theorem in Hamming space Hn=(Xn,dH). Now we contribute a diametric theorem for such spaces, if they are endowed with the group structure Gn=nΣ1G, the direct sum of a group G on X={0,1,...,q-1}, and as candidates are considered subgroups of Gn. For all finite groups G, every permitted distance d, and all n≥d subgroups of Gnwith diameter d have maximal cardinality qd. Other extremal problems can also be studied in this setting.