DocumentCode :
1976692
Title :
Another diametric theorem in Hamming spaces: optimal group anticodes
Author :
Ahlswede, R.
Author_Institution :
Department of Mathematics, University of Bielefeld, POB 100131, D-33501 Bielefeld, Germany, Email: ahlswede@math.uni-bielefeld.de
fYear :
2006
fDate :
13-17 March 2006
Firstpage :
212
Lastpage :
216
Abstract :
In the last century together with Levon Khachatrian we established a diametric theorem in Hamming space Hn=(Xn,dH). Now we contribute a diametric theorem for such spaces, if they are endowed with the group structure Gn=nΣ1G, the direct sum of a group G on X={0,1,...,q-1}, and as candidates are considered subgroups of Gn. For all finite groups G, every permitted distance d, and all n≥d subgroups of Gnwith diameter d have maximal cardinality qd. Other extremal problems can also be studied in this setting.
Keywords :
Mathematics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop, 2006. ITW '06 Punta del Este. IEEE
Conference_Location :
Punta del Este, Uruguay
Print_ISBN :
1-4244-0035-X
Electronic_ISBN :
1-4244-0036-8
Type :
conf
DOI :
10.1109/ITW.2006.1633814
Filename :
1633814
Link To Document :
بازگشت