• DocumentCode
    1978700
  • Title

    Robust adaptive tracking control of delta wing vortex-coupled roll dynamics using RBF neural networks

  • Author

    Pakmehr, Mehrdad ; Gordon, Brandon W. ; Rabbath, C.A.

  • Author_Institution
    Dept. of Mech. & Ind. Eng., Concordia Univ., Montreal, Que.
  • fYear
    2005
  • fDate
    28-31 Aug. 2005
  • Firstpage
    1039
  • Lastpage
    1043
  • Abstract
    In this paper a robust adaptive control strategy has been proposed and applied for vortex-coupled delta wing roll dynamics with parameter uncertainty in the rolling moment coefficient. The robust adaptive tracking neuro-controller employs a new network of Gaussian radial basis functions (RBF) to adaptively compensate for the rolling moment coefficient. Rolling moment coefficient, as a function of left and right vortex breakdown positions, is estimated online in adaptive neuro-controller structure using a special feature of RBF networks for the delta wing case. The proposed controller is stable with good tracking performance
  • Keywords
    Gaussian processes; adaptive control; aerospace control; neurocontrollers; radial basis function networks; robust control; tracking; Gaussian radial basis functions; RBF neural networks; delta wing vortex-coupled roll dynamics control; parameter uncertainty; robust adaptive tracking neurocontroller; rolling moment coefficient; Adaptive control; Aerodynamics; Aerospace control; Control system synthesis; Motion control; Neural networks; Programmable control; Radial basis function networks; Recurrent neural networks; Robust control;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Applications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference on
  • Conference_Location
    Toronto, Ont.
  • Print_ISBN
    0-7803-9354-6
  • Type

    conf

  • DOI
    10.1109/CCA.2005.1507267
  • Filename
    1507267