DocumentCode
1980501
Title
The Information Propagation Speed Upper Bound in Cognitive Radio Networks
Author
Han, Chuan ; Yang, Yaling
Author_Institution
ECE Dept., Virginia Tech, Blacksburg, VA, USA
fYear
2010
fDate
6-10 Dec. 2010
Firstpage
1
Lastpage
5
Abstract
The information propagation speed (IPS) of a network specifies how fast the information can be transmitted in a network. In this paper, we derive an IPS upper bound in cognitive radio networks. The upper bound is tight when the number of primary user (PU) channels is large. We discover that the IPS upper bound is determined by both the PU activity level and the transmission range of cognitive radios. When the PU activity level is below a certain threshold value, the IPS upper bound is achieved if cognitive radios transmit at their maximum transmission ranges. When the PU activity level is above the threshold, the cognitive radios have to use a smaller transmission range to reach the IPS upper bound. In addition, we also provide a numerical method for computing the threshold value of PU activity level and the optimal transmission range for achieving the IPS upper bound. The correctness of our analysis is validated by simulations. Our work can provide important insights and guidelines for optimal secondary user placement in cognitive radio networks.
Keywords
cognitive radio; numerical analysis; telecommunication channels; cognitive radio networks; information propagation speed; numerical method; primary user channels; Analytical models; Cognitive radio; Computational modeling; Delay; IEEE Communications Society; Sensors; Upper bound;
fLanguage
English
Publisher
ieee
Conference_Titel
Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE
Conference_Location
Miami, FL
ISSN
1930-529X
Print_ISBN
978-1-4244-5636-9
Electronic_ISBN
1930-529X
Type
conf
DOI
10.1109/GLOCOM.2010.5683168
Filename
5683168
Link To Document