• DocumentCode
    1980501
  • Title

    The Information Propagation Speed Upper Bound in Cognitive Radio Networks

  • Author

    Han, Chuan ; Yang, Yaling

  • Author_Institution
    ECE Dept., Virginia Tech, Blacksburg, VA, USA
  • fYear
    2010
  • fDate
    6-10 Dec. 2010
  • Firstpage
    1
  • Lastpage
    5
  • Abstract
    The information propagation speed (IPS) of a network specifies how fast the information can be transmitted in a network. In this paper, we derive an IPS upper bound in cognitive radio networks. The upper bound is tight when the number of primary user (PU) channels is large. We discover that the IPS upper bound is determined by both the PU activity level and the transmission range of cognitive radios. When the PU activity level is below a certain threshold value, the IPS upper bound is achieved if cognitive radios transmit at their maximum transmission ranges. When the PU activity level is above the threshold, the cognitive radios have to use a smaller transmission range to reach the IPS upper bound. In addition, we also provide a numerical method for computing the threshold value of PU activity level and the optimal transmission range for achieving the IPS upper bound. The correctness of our analysis is validated by simulations. Our work can provide important insights and guidelines for optimal secondary user placement in cognitive radio networks.
  • Keywords
    cognitive radio; numerical analysis; telecommunication channels; cognitive radio networks; information propagation speed; numerical method; primary user channels; Analytical models; Cognitive radio; Computational modeling; Delay; IEEE Communications Society; Sensors; Upper bound;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE
  • Conference_Location
    Miami, FL
  • ISSN
    1930-529X
  • Print_ISBN
    978-1-4244-5636-9
  • Electronic_ISBN
    1930-529X
  • Type

    conf

  • DOI
    10.1109/GLOCOM.2010.5683168
  • Filename
    5683168