DocumentCode :
1982315
Title :
Entropy-constrained geometric vector quantization for transform image coding
Author :
Fischer, Thomas R.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA
fYear :
1991
fDate :
14-17 Apr 1991
Firstpage :
2269
Abstract :
A noiseless code is combined with a lattice-based vector quantizer (VQ). For small distortion encoding of Laplacian data, the noiseless code has redundancy of at most 2/L, where L is the vector dimension. The VQ and noiseless code are used in discrete cosine transform image coding. An image coder using a single VQ/noiseless code yields performance roughly equivalent to a benchmark coder using entropy-constrained scalar quantization with entropy codes designed for each transform coefficient. The use of several VQ/noiseless codes can further reduce the encoding rate
Keywords :
codes; data compression; encoding; picture processing; transforms; DCT; Laplacian data; discrete cosine transform; encoding rate; entropy constrained vector quantisation; geometric vector quantization; image coder; lattice-based vector quantizer; noiseless code; redundancy; transform coefficient; transform image coding; vector dimension; Discrete cosine transforms; Discrete transforms; Encoding; Entropy coding; Image coding; Image representation; Lattices; Noise reduction; Transform coding; Vector quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on
Conference_Location :
Toronto, Ont.
ISSN :
1520-6149
Print_ISBN :
0-7803-0003-3
Type :
conf
DOI :
10.1109/ICASSP.1991.150740
Filename :
150740
Link To Document :
بازگشت