• DocumentCode
    1983253
  • Title

    Unified Microwave Network Theory Based on Clifford Algebra in Lorentz Space

  • Author

    Bolinder, E F

  • Author_Institution
    Chalmers Univ of Tech, Div of Network Theory, Gothenburg, Sweden
  • fYear
    1982
  • fDate
    13-17 Sept. 1982
  • Firstpage
    25
  • Lastpage
    35
  • Abstract
    A unified network theory is presented. It consists of three parts: a network formalization, a geometrical model, which is the Minkowski model of Lorentz space, and a mathematical tool, Clifford algebra. The latter is well suited in dealing with rotations in Lorentz space. The rotations can be represented by the exponentials of a single infinitesimal isometry or a single Clifford bivector. Special emphasis is put on the parabolic rotations. Through the work of M Riesz we now know how to deal with these. The network theory is applied to some simple synthesis examples starting with a given insertion loss power ratio. The entire procedure is performed in Lorentz space. Transformations to Flatland, the impedance plane, for example, are done by simple projective transformations. The examples chosen are: 1) Butterworth-3 network (parabolic), 2) Chebyshev-1 network (hyperbolic-parabolic), 3) simple stepline (hyperbolic-elliptic), and 4) exponentially tapered line (finite continuous transformation group).
  • Keywords
    Algebra; Chebyshev approximation; Impedance; Insertion loss; Intelligent networks; Mathematical model; Microwave theory and techniques; Network synthesis; Optical reflection; Solid modeling;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Microwave Conference, 1982. 12th European
  • Conference_Location
    Helsinki, Finland
  • Type

    conf

  • DOI
    10.1109/EUMA.1982.333138
  • Filename
    4131740