Title :
Distributed trust protocol for IaaS Cloud Computing
Author :
Kashif, Ubaidullah Alias ; Memon, Zulfiqar Ali ; Balouch, Abdul Rasheed ; Chandio, Jamil Ahmed
Author_Institution :
Dept. of Comput. Sci., Sukkur Inst. of Bus. Adm., Sukkur, Pakistan
Abstract :
Due to economic benefits of cloud computing, consumers have rushed to adopt Cloud Computing. Apart from rushing into cloud, security concerns are also raised. These security concerns cause trust issue in adopting cloud computing. Enterprises adopting cloud, will have no more control over data, application and other computing resources that are outsourced from cloud computing provider. In this paper we propose a novel technique that will not leave consumer alone in cloud environment. Firstly we present theoretical analysis of selected state of the art technique and identified issues in IaaS cloud computing. Secondly we propose Distributed Trust Protocol for IaaS Cloud Computing in order to mitigate trust issue between cloud consumer and provider. Our protocol is distributed in nature that lets the consumer to check the integrity of cloud computing platform that is in the premises of provider´s environment. We follow the rule of security duty separation between the premises of consumer and provider and let the consumer be the actual owner of the platform. In our protocol, user VM hosted at IaaS Cloud Computing uses Trusted Boot process by following specification of Trusted Computing Group (TCG) and by utilizing Trusted Platform Module (TPM) Chip of the consumer. The protocol is for the Infrastructure as a Service IaaS i.e. lowest service delivery model of cloud computing.
Keywords :
cloud computing; formal specification; security of data; trusted computing; virtual machines; IaaS cloud computing; Infrastructure as a Service; TCG specification; TPM chip; Trusted Computing Group; cloud computing platform integrity checking; cloud consumer; cloud environment; cloud provider; computing resources; distributed trust protocol; economic benefit; security concern; security duty separation; service delivery model; trust issue mitigation; trusted boot process; trusted platform module chip; user VM; Hardware; Information systems; Security; Virtual machine monitors; Trusted cloud computing; cloud computing; cloud security and trust; trusted computing; virtualization;
Conference_Titel :
Applied Sciences and Technology (IBCAST), 2015 12th International Bhurban Conference on
Conference_Location :
Islamabad
DOI :
10.1109/IBCAST.2015.7058516