DocumentCode :
1996801
Title :
Automatic detection of sleep stages using the EEG
Author :
Van Hese, P. ; Philips, W. ; De Koninck, J. ; Van de Walle, R. ; Lemahieu, I.
Author_Institution :
Elis Dept., Ghent Univ., Belgium
Volume :
2
fYear :
2001
fDate :
2001
Firstpage :
1944
Abstract :
We present a method for the detection of sleep stages using the EEG (electroencephalogram). The method consists of four steps: segmentation; parameter extraction; cluster analysis; and classification. The parameters we compared were the parameters of Hjorth, the harmonic parameters and the relative band energy. For cluster analysis we used a modified version of the K-means algorithm. It is shown that the investigated parameters are capable of, extracting information from the EEG relevant for sleep stage scoring. Using the modified K-means algorithm it is possible to find ´similar´ segments and hence automate the detection of sleep stages. However, extra information, e.g. the ECG (electrocardiogram) or the EOG (electrooculogram), is probably necessary for a clear discrimination between the different sleep stages.
Keywords :
electroencephalography; iterative methods; medical signal processing; pattern classification; pattern clustering; signal classification; signal sampling; sleep; EEG; automatic detection; classification; cluster analysis; harmonic parameters; iteratively adjusted vector; modified K-means algorithm; parameter extraction; segmentation; sleep scoring; sleep stages; spectral density function; Algorithm design and analysis; Clustering algorithms; Data mining; Electrocardiography; Electroencephalography; Electrooculography; Hospitals; Nervous system; Parameter extraction; Sleep;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE
ISSN :
1094-687X
Print_ISBN :
0-7803-7211-5
Type :
conf
DOI :
10.1109/IEMBS.2001.1020608
Filename :
1020608
Link To Document :
بازگشت