• DocumentCode
    1998271
  • Title

    Resource Allocation with Load Balancing for Cognitive Radio Networks

  • Author

    Wang, Huahui ; Ren, Jian ; Li, Tongtong

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA
  • fYear
    2010
  • fDate
    6-10 Dec. 2010
  • Firstpage
    1
  • Lastpage
    5
  • Abstract
    This paper considers channel and power allocation for cognitive radio (CR) networks. We assume that the total available spectrum is divided into several bands, each consisting of a group of channels. A centralized base station, enabled by spectrum sensing, is assumed to have the knowledge of all vacant channels, which will be assigned to various CRs according to their requests. The objective of resource allocation is to maximize the sum data rate of all CRs. Since the activities of primary users may cause heavy traffic in some bands while leaving other bands idle, load balancing is first performed to equalize the traffic. A multi-level subset sum algorithm as well as a simpler greedy algorithm is proposed to achieve excellent load balancing performance. After that, an algorithm incorporated with constant-power water filling is proposed to maximize the sum data rate. Simulation results are presented to illustrate the effectiveness of the proposed algorithms.
  • Keywords
    channel allocation; cognitive radio; greedy algorithms; resource allocation; centralized base station; channel allocation; cognitive radio network; constant-power water filling; greedy algorithm; load balancing performance; multilevel subset sum algorithm; power allocation; resource allocation; spectrum sensing; sum data rate; traffic equalization; Approximation algorithms; Base stations; Cognitive radio; Greedy algorithms; Load management; Load modeling; Resource management;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE
  • Conference_Location
    Miami, FL
  • ISSN
    1930-529X
  • Print_ISBN
    978-1-4244-5636-9
  • Electronic_ISBN
    1930-529X
  • Type

    conf

  • DOI
    10.1109/GLOCOM.2010.5683966
  • Filename
    5683966