• DocumentCode
    2018285
  • Title

    HybridMiner: Mining Maximal Frequent Itemsets Using Hybrid Database Representation Approach

  • Author

    Bashir, Shariq ; Baig, A. Rauf

  • Author_Institution
    FAST, Nat. Univ. of Comput. & Emerging Sci., Islamabad
  • fYear
    2005
  • fDate
    24-25 Dec. 2005
  • Firstpage
    1
  • Lastpage
    7
  • Abstract
    In this paper we present a novel hybrid (array-based layout and vertical bitmap layout) database representation approach for mining complete maximal frequent itemset (MFI) on sparse and large datasets. Our work is novel in terms of scalability, item search order and two horizontal and vertical projection techniques. We also present a maximal algorithm using this hybrid database representation approach. Different experimental results on real and sparse benchmark datasets show that our approach is better than previous state of art maximal algorithms
  • Keywords
    data mining; database management systems; HybridMiner; array-based layout; hybrid database representation; maximal frequent itemsets mining; sparse datasets; vertical bitmap layout; Art; Association rules; Data mining; Filtering; Frequency; Itemsets; Pattern analysis; Scalability; Tail; Transaction databases;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    9th International Multitopic Conference, IEEE INMIC 2005
  • Conference_Location
    Karachi
  • Print_ISBN
    0-7803-9429-1
  • Electronic_ISBN
    0-7803-9430-5
  • Type

    conf

  • DOI
    10.1109/INMIC.2005.334484
  • Filename
    4133499