• DocumentCode
    2019099
  • Title

    On Algebraic Decoding of q-ary Reed-Muller and Product Reed-Solomon Codes

  • Author

    Santhi, N.

  • Author_Institution
    CCS-3 Div., LANL, Los Alamos, NM
  • fYear
    2007
  • fDate
    24-29 June 2007
  • Firstpage
    1351
  • Lastpage
    1355
  • Abstract
    We consider a list decoding algorithm recently proposed by Pellikaan-Wu [8] for q-ary Reed-Muller codes R M q(l, m, n) of length n les qm when I les q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of taules (1 - radiclqm-1 /n). This is an improvement over the proof using one-point Algebraic-Geometric codes given in [8]. The described algorithm can be adapted to decode Product-Reed- Solomon codes. We then propose a new low complexity recursive algebraic decoding algorithm for Reed-Muller and product-Reed-Solomon codes. Our algorithm achieves a relative error correction radius of tau < Pii=1 m(1 - radicki/q). This technique is then proved to outperform the Pellikaan-Wu method in both complexity and error correction radius over a wide range of code rates.
  • Keywords
    Reed-Muller codes; Reed-Solomon codes; algebra; decoding; geometric codes; algebraic decoding; correctness proof; list decoding algorithm; one-point algebraic-geometric codes; product Reed-Solomon code; q-ary Reed-Muller code; relative error-correction radius; Decoding; Error correction; Error correction codes; Galois fields; Polynomials; Reed-Solomon codes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory, 2007. ISIT 2007. IEEE International Symposium on
  • Conference_Location
    Nice
  • Print_ISBN
    978-1-4244-1397-3
  • Type

    conf

  • DOI
    10.1109/ISIT.2007.4557130
  • Filename
    4557130