DocumentCode :
2041118
Title :
Text mining with conceptual graphs
Author :
Montes-y-gómez, M. ; Gelbukh, A. ; Lopez-Lopez, Alvaro ; Baeza-Yates, R.
Author_Institution :
Centro de Investigacion en Computacion, Mexico
Volume :
2
fYear :
2001
fDate :
2001
Firstpage :
898
Abstract :
A method for conceptual clustering of a collection of texts represented with conceptual graphs is presented. It uses an incremental strategy to construct the cluster hierarchy and incorporates some characteristics attractive for text mining purposes. For instance, it considers the structural information of the graphs, uses domain knowledge to detect the clusters with generalized descriptions, and uses a user-defined similarity measure between the graphs
Keywords :
data mining; graph theory; pattern clustering; text analysis; cluster hierarchy; conceptual graphs; conceptual text clustering; domain knowledge; generalized descriptions; incremental strategy; structural information; text mining; user interest profile; user-defined similarity measure; Area measurement; Data mining; Extraterrestrial measurements; Machine learning; Natural languages; Optical computing; Pattern analysis; Text mining; Text processing; Unsupervised learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man, and Cybernetics, 2001 IEEE International Conference on
Conference_Location :
Tucson, AZ
ISSN :
1062-922X
Print_ISBN :
0-7803-7087-2
Type :
conf
DOI :
10.1109/ICSMC.2001.973031
Filename :
973031
Link To Document :
بازگشت