DocumentCode :
2041291
Title :
Parameters Selection of Hybrid Kernel Based on GA
Author :
Meng, Y.Y.
Author_Institution :
Sch. of Comput. Sci. & Technol., Shandong Economic Univ., Jinan
fYear :
2009
fDate :
23-24 May 2009
Firstpage :
1
Lastpage :
4
Abstract :
Support vector machines (SVMs), a powerful machine method proposed by Vapnik have made significant achievement in pattern classification and regression estimation. In practice, when we use the method of SVM there exist two problems: the selection of kernel and the selection of parameters. In this paper, we discuss the hybrid kernels and propose a new method to select parameters, which uses genetic algorithm by designing relevant fitness function. Using some benchmark data sets, we show the effectiveness of our method.
Keywords :
genetic algorithms; pattern classification; regression analysis; support vector machines; fitness function; genetic algorithm; hybrid kernel; parameters selection; pattern classification; regression estimation; support vector machines; Computer science; Electronic mail; Extrapolation; Genetic algorithms; Interpolation; Kernel; Pattern classification; Power generation economics; Support vector machine classification; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems and Applications, 2009. ISA 2009. International Workshop on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-3893-8
Electronic_ISBN :
978-1-4244-3894-5
Type :
conf
DOI :
10.1109/IWISA.2009.5072997
Filename :
5072997
Link To Document :
بازگشت