DocumentCode :
2043384
Title :
A Knowledge Structuring Technique for Image Classification
Author :
Le Dong ; Izquierdo, Ebroul
Author_Institution :
Univ. of London, London
Volume :
6
fYear :
2007
fDate :
Sept. 16 2007-Oct. 19 2007
Abstract :
A system for image analysis and classification based on a knowledge structuring technique is presented. The knowledge structuring technique automatically creates a relevance map from salient areas of natural images. It also derives a set of well-structured representations from low-level description to drive the final classification. The backbone of the knowledge structuring technique is a distribution mapping strategy involving two basic modules: structured low-level feature extraction using convolution neural network and a topology representation module based on a growing cell structure network. Classification is achieved by simulating high-level top-down visual information perception and classifying using an incremental Bayesian parameter estimation method. The proposed modular system architecture offers straightforward expansion to include user relevance feedback, contextual input, and multimodal information if available.
Keywords :
Bayes methods; feature extraction; image classification; image representation; learning (artificial intelligence); neural nets; parameter estimation; relevance feedback; topology; cell structure network; convolution neural network; distribution mapping strategy; feature extraction; image analysis; image classification; incremental Bayesian parameter estimation; knowledge structuring technique; relevance feedback; topology representation module; visual perception; Bayesian methods; Convolution; Feature extraction; Image analysis; Image classification; Network topology; Neural networks; Neurofeedback; Parameter estimation; Spine; Image classification; knowledge structuring; topology representation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2007. ICIP 2007. IEEE International Conference on
Conference_Location :
San Antonio, TX
ISSN :
1522-4880
Print_ISBN :
978-1-4244-1437-6
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2007.4379600
Filename :
4379600
Link To Document :
بازگشت