DocumentCode :
2062507
Title :
Near optimal reduced-complexity decoding algorithms for LDPC codes
Author :
Chen, J. ; Dholakia, A. ; Eleftheriou, E. ; Fossorier, M. ; Hu, X.-Y.
Author_Institution :
Dept. of Electr. Eng., Hawaii Univ., Honolulu, HI, USA
fYear :
2002
fDate :
2002
Firstpage :
455
Abstract :
In this paper, two families of reduced-complexity algorithms for decoding low-density parity-check (LDPC) codes based on incorporating either a normalization or a correction term in the check-node update are presented. A simplified symbol-node update can also be used. Using simulations, it is shown that these simplified belief propagation (BP) approaches provide near optimum performance with different classes of LDPC codes.
Keywords :
computational complexity; decoding; parity check codes; LDPC codes; belief propagation approaches; check-node update; decoding; low-density parity-check codes; reduced-complexity algorithms; symbol-node update; Approximation algorithms; Belief propagation; Computational complexity; Computational modeling; Decoding; Jacobian matrices; Notice of Violation; Parity check codes; Piecewise linear techniques; Table lookup;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2002. Proceedings. 2002 IEEE International Symposium on
Print_ISBN :
0-7803-7501-7
Type :
conf
DOI :
10.1109/ISIT.2002.1023727
Filename :
1023727
Link To Document :
بازگشت