• DocumentCode
    2107448
  • Title

    Bayesian estimation of abrupt changes contaminated by multiplicative noise using MCMC

  • Author

    Tourneret, Jean-Yves ; Doisy, Michel ; Mazzei, Manuel

  • Author_Institution
    ENSEIHT/GAPSE, Nat. Polytech. Inst. of Toulouse, France
  • Volume
    4
  • fYear
    1998
  • fDate
    12-15 May 1998
  • Firstpage
    2133
  • Abstract
    The paper addresses the estimation of abrupt changes which are contaminated by multiplicative Gaussian noise. The marginal mean a posteriori or marginal maximum a posteriori estimators can be derived for estimating the position of a single abrupt change. However, these estimators have optimization or integration problems for multiple abrupt changes. The paper solves these optimization problems by using Markov chain Monte Carlo methods (MCMC)
  • Keywords
    Bayes methods; Gaussian noise; Markov processes; Monte Carlo methods; maximum likelihood estimation; parameter estimation; radar detection; radar imaging; spectral analysis; synthetic aperture radar; white noise; Bayesian estimation; MCMC; Markov chain Monte Carlo methods; SAR image processing; abrupt change estimation; integration problem; marginal maximum a posteriori estimator; marginal mean a posteriori estimator; multiplicative white Gaussian noise; optimization problem; position estimation; spectral analysis algorithm; Bayesian methods; Gaussian noise; Image processing; Maximum a posteriori estimation; Maximum likelihood estimation; Optimization methods; Reflectivity; Signal processing; Speckle; Synthetic aperture radar;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on
  • Conference_Location
    Seattle, WA
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-4428-6
  • Type

    conf

  • DOI
    10.1109/ICASSP.1998.681567
  • Filename
    681567