DocumentCode
2107448
Title
Bayesian estimation of abrupt changes contaminated by multiplicative noise using MCMC
Author
Tourneret, Jean-Yves ; Doisy, Michel ; Mazzei, Manuel
Author_Institution
ENSEIHT/GAPSE, Nat. Polytech. Inst. of Toulouse, France
Volume
4
fYear
1998
fDate
12-15 May 1998
Firstpage
2133
Abstract
The paper addresses the estimation of abrupt changes which are contaminated by multiplicative Gaussian noise. The marginal mean a posteriori or marginal maximum a posteriori estimators can be derived for estimating the position of a single abrupt change. However, these estimators have optimization or integration problems for multiple abrupt changes. The paper solves these optimization problems by using Markov chain Monte Carlo methods (MCMC)
Keywords
Bayes methods; Gaussian noise; Markov processes; Monte Carlo methods; maximum likelihood estimation; parameter estimation; radar detection; radar imaging; spectral analysis; synthetic aperture radar; white noise; Bayesian estimation; MCMC; Markov chain Monte Carlo methods; SAR image processing; abrupt change estimation; integration problem; marginal maximum a posteriori estimator; marginal mean a posteriori estimator; multiplicative white Gaussian noise; optimization problem; position estimation; spectral analysis algorithm; Bayesian methods; Gaussian noise; Image processing; Maximum a posteriori estimation; Maximum likelihood estimation; Optimization methods; Reflectivity; Signal processing; Speckle; Synthetic aperture radar;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on
Conference_Location
Seattle, WA
ISSN
1520-6149
Print_ISBN
0-7803-4428-6
Type
conf
DOI
10.1109/ICASSP.1998.681567
Filename
681567
Link To Document