DocumentCode :
2112788
Title :
Ranking Documents with Query-Topic Sensitivity
Author :
Hatakenaka, S. ; Shimada, S. ; Miura, Tsuyoshi
Author_Institution :
Dept..of Electr. & Electr. Eng., HOSEI Univ., Tokyo, Japan
Volume :
3
fYear :
2012
fDate :
4-7 Dec. 2012
Firstpage :
195
Lastpage :
199
Abstract :
In this work, we discuss Query-Topic Sensitive Ranking algorithm, called Topic-Driven PageRank (TDPR), to inquire general documents based on a notion of importance. The main idea is that we extract knowledge from training data for multiple classification and build characteristic feature for each topic. By this approach, we get documents reflecting queries and topics within so that we can improve query results and to avoid topic drift problems.
Keywords :
document handling; query processing; TDPR; characteristic feature; multiple classification; query-topic sensitivity; ranking documents; topic-driven PageRank; PageRank; Topic; Topic drift problems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Intelligence and Intelligent Agent Technology (WI-IAT), 2012 IEEE/WIC/ACM International Conferences on
Conference_Location :
Macau
Print_ISBN :
978-1-4673-6057-9
Type :
conf
DOI :
10.1109/WI-IAT.2012.207
Filename :
6511676
Link To Document :
بازگشت