DocumentCode :
2123047
Title :
Texture conditional local variance model in fuzzy-based unsupervised segmentation approach
Author :
Velloso, Maria Luiza F ; De Souza, Flávio Joaquim ; De Almeida, Nival N.
Author_Institution :
Dept. of Electron. Eng., Rio de Janeiro State Univ., Brazil
Volume :
2
fYear :
2004
fDate :
20-24 Sept. 2004
Firstpage :
1414
Abstract :
This paper presents a fuzzy-based unsupervised segmentation of textured images driven by integrated spectral and spatial features. Spectral information can be obtained directly from pixel values in different frequency-band images, while spatial information can be extracted by mean of texture analysis. A new model, based on a multiplicative autoregressive random field model, was used as texture.
Keywords :
autoregressive processes; feature extraction; fuzzy systems; image classification; image segmentation; image texture; remote sensing; unsupervised learning; MARC model; Multiplicative Autoregressive Random Field model; frequency-band image; fuzzy-based unsupervised segmentation; image classification; image texture analysis; spectral-spatial feature integration; texture conditional local variance model; Data mining; Feature extraction; Image analysis; Image classification; Image processing; Image segmentation; Image texture analysis; Information analysis; Remote sensing; Spatial resolution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International
Print_ISBN :
0-7803-8742-2
Type :
conf
DOI :
10.1109/IGARSS.2004.1368684
Filename :
1368684
Link To Document :
بازگشت