DocumentCode :
2125254
Title :
Efficient list decoding for parallel concatenated convolutional codes
Author :
Bai, Chunlong ; Mielczarek, Bartosz ; Krzymien, Witold A. ; Fair, Ivan J.
Author_Institution :
TRLabs, Alberta Univ., Edmonton, Alta., Canada
Volume :
4
fYear :
2004
fDate :
5-8 Sept. 2004
Firstpage :
2586
Abstract :
The focus of this research work is the sub-optimal list decoding algorithms for parallel concatenated convolutional codes (PCCCs) which improve the frame error rate (FER) performance. Error events and weight spectra for convolutional codes and PCCCs are analyzed with emphasis on their effects on list decoding. We explain the inefficiencies of list decoding algorithms for PCCCs that use a list generated from the component codes, and introduce a new algorithm based on the sub-block structure that generates a list directly for the PCCC. The additional complexity of the new algorithm is low and does not depend on the complexity of the component code. Simulations on the additive white Gaussian noise (AWGN) channel show that the new algorithm can lower the frame error floor by more than one order of magnitude.
Keywords :
AWGN channels; computational complexity; concatenated codes; convolutional codes; decoding; error statistics; additive white Gaussian noise channel; computational complexity; frame error rate; parallel concatenated convolutional codes; sub-block structure; sub-optimal list decoding algorithms; AWGN; Algorithm design and analysis; Bit error rate; Concatenated codes; Convolutional codes; Error analysis; Iterative algorithms; Iterative decoding; Maximum likelihood decoding; Viterbi algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on
Print_ISBN :
0-7803-8523-3
Type :
conf
DOI :
10.1109/PIMRC.2004.1368787
Filename :
1368787
Link To Document :
بازگشت