• DocumentCode
    2133204
  • Title

    Classifying News Corpus by self-organizing maps

  • Author

    Yanagida, T. ; Miura, Takao ; Shioya, Isamu

  • Author_Institution
    Dept. of Elect. & Elect. Engr., Hosei Univ., Tokyo, Japan
  • Volume
    2
  • fYear
    2003
  • fDate
    28-30 Aug. 2003
  • Firstpage
    800
  • Abstract
    In this paper, we introduce extended self organization map (SOM), called k-propagated SOM (K-SOM, or SOM(k)), and discuss how to classify text documents. Also we discuss how we evaluate classification capabilities of points on SOM (K-SOM) maps. We discuss some experiments to Reuters News Corpus datasets and show the usefulness of K-SOM.
  • Keywords
    self-organising feature maps; text analysis; word processing; Reuters News Corpus dataset; k-propagated self-organizing map; text document classification; Data mining; Informatics; Principal component analysis; Self organizing feature maps; Singular value decomposition; Support vector machine classification; Support vector machines; Testing; Text categorization; Training data;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Communications, Computers and signal Processing, 2003. PACRIM. 2003 IEEE Pacific Rim Conference on
  • Print_ISBN
    0-7803-7978-0
  • Type

    conf

  • DOI
    10.1109/PACRIM.2003.1235902
  • Filename
    1235902