DocumentCode
2133333
Title
Kernel entropy component analysis: New theory and semi-supervised learning
Author
Jenssen, Robert
Author_Institution
Dept. of Phys. & Technol., Univ. of Tromso, Tromso, Norway
fYear
2011
fDate
18-21 Sept. 2011
Firstpage
1
Lastpage
6
Abstract
A new theory for kernel entropy component analysis (kernel ECA) is developed, based on distribution dependent convolution operators, ensuring the validity of the method for any positive semi-definite kernel. Furthermore, a new semi-supervised kernel ECA classification method is derived with positive results compared to the state-of-the-art.
Keywords
entropy; learning (artificial intelligence); pattern classification; principal component analysis; ECA classification method; distribution dependent convolution operators; kernel entropy component analysis; semisupervised learning; Convolution; Eigenvalues and eigenfunctions; Entropy; Indexes; Kernel; Principal component analysis; Vectors; Kernel entropy component analysis; classification; convolution operators; semi-supervised; spectral;
fLanguage
English
Publisher
ieee
Conference_Titel
Machine Learning for Signal Processing (MLSP), 2011 IEEE International Workshop on
Conference_Location
Santander
ISSN
1551-2541
Print_ISBN
978-1-4577-1621-8
Electronic_ISBN
1551-2541
Type
conf
DOI
10.1109/MLSP.2011.6064626
Filename
6064626
Link To Document