DocumentCode :
2136788
Title :
Intuitionistic counterparts of finitely-valued logics
Author :
Baaz, Matthias ; Fermuller, Christian G.
Author_Institution :
Inst. fur Algebra und Diskrete Math., Tech. Univ. Wien, Austria
fYear :
1996
fDate :
29-31 May 1996
Firstpage :
136
Lastpage :
141
Abstract :
We investigate the relation between Kripke´s model structures for intuitionistic logic and the simple syntactical restriction that turns the classical sequent calculus into an intuitionistic one. For this purpose we generalize ordinary Kripke structures to ones based on arbitrary finite sets of truth values and show that imposing a proper syntactical restriction on many-placed sequents leads to calculi that are correct and cut-free complete for the new logics
Keywords :
multivalued logic; process algebra; Kripke structures; Kripke´s model structures; calculi; classical sequent calculus; cut-free complete; finitely-valued logics; intuitionistic logic; syntactical restriction; Algebra; Calculus; Logic functions; Virtual manufacturing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multiple-Valued Logic, 1996. Proceedings., 26th International Symposium on
Conference_Location :
Santiago de Compostela
ISSN :
0195-623X
Print_ISBN :
0-8186-7392-3
Type :
conf
DOI :
10.1109/ISMVL.1996.508349
Filename :
508349
Link To Document :
بازگشت