• DocumentCode
    2138599
  • Title

    Multi-sensor data classification in remote sensing using MRF regional growing algorithm

  • Author

    Lee, Sanghoon ; Suh, Asook ; Jung, Myunghee

  • Author_Institution
    Dept. of Ind. Eng., Kyungwon Univ., Kyunggi, South Korea
  • Volume
    6
  • fYear
    2001
  • fDate
    2001
  • Firstpage
    2884
  • Abstract
    This paper studies a multi-stage method using hierarchical clustering for unsupervised image classification to classify the land-cover using remotely-sensed data from multiple sensors. The multi-stage method performs region-growing segmentation using a hierarchical clustering procedure which makes use of the spatial contextual information by characterizing geophysical connectedness of digital image structure with Markov random field
  • Keywords
    Markov processes; airborne radar; image classification; image segmentation; pattern clustering; remote sensing by radar; sensor fusion; synthetic aperture radar; terrain mapping; unsupervised learning; MRF regional growing algorithm; Markov random field; digital image structure; geophysical connectedness; hierarchical clustering; land-cover; multi-sensor data classification; multi-stage method; region-growing segmentation; remote sensing; remotely sensed data; spatial contextual information; unsupervised image classification; Bayesian methods; Geophysical measurements; Image classification; Image segmentation; Image sensors; Layout; Pixel; Remote sensing; Sensor fusion; Smoothing methods;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium, 2001. IGARSS '01. IEEE 2001 International
  • Conference_Location
    Sydney, NSW
  • Print_ISBN
    0-7803-7031-7
  • Type

    conf

  • DOI
    10.1109/IGARSS.2001.978194
  • Filename
    978194