• DocumentCode
    2139573
  • Title

    A modeling method based on ML-DC algorithm for non-Gaussian colored processes

  • Author

    Jinhua Hu ; Pingbo Wang ; Feng Liu ; Yu Wang

  • Author_Institution
    Electron. Eng. Coll., Naval Univ. of Eng., Wuhan, China
  • fYear
    2013
  • fDate
    23-25 July 2013
  • Firstpage
    1224
  • Lastpage
    1228
  • Abstract
    Gaussian mixture autoregressive model is usually used to fit the probability density and power spectrum density of non-Gaussian colored processes. Its parameters can be estimated through the ML-DC algorithm. After descriptions of the model and the estimation problem, maximum likelihood estimation for autoregressive parameters and the dynamic clutter algorithm for Gaussian mixture parameters are deduced, respectively. Based on these, ML-DC algorithm for coupling estimation between power spectrum density parameters and probability density parameters is built up. Finally, a numerical instance is illustrated where performance of estimation is discussed in detail.
  • Keywords
    Gaussian processes; autoregressive processes; clutter; maximum likelihood estimation; mixture models; probability; Gaussian mixture autoregressive model; Gaussian mixture parameters; ML-DC algorithm; autoregressive parameters; coupling estimation; dynamic clutter algorithm; maximum likelihood estimation; nonGaussian colored processes; parameter estimation; power spectrum density parameters; probability density parameters; Clutter; Educational institutions; Heuristic algorithms; Maximum likelihood estimation; Parameter estimation; Signal processing algorithms; Dynamic clutter algorithm; Gaussian mixture autoregressive model; Maximum likelihood estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Natural Computation (ICNC), 2013 Ninth International Conference on
  • Conference_Location
    Shenyang
  • Type

    conf

  • DOI
    10.1109/ICNC.2013.6818165
  • Filename
    6818165