Abstract :
Energy harvesting has become a very popular research topic over the last 12 years, but has only made an industrial impact in a few areas, noticeably in process plant monitoring, including the water and petrochemical processing industries. Like most technologies, greater adoption needs to be realized if performance is to increase and cost to decrease. Batteries cost only tens of pence per Wh, and whilst harvesters can in theory generate very large amount of energy over a long enough period of operation, a typical harvester can require a capital expenditure of tens to hundreds of pounds, making them unattractive in many applications. The automotive sector is a potential area in which harvesters could provide useful functionality and gain from economies of scale, if they can be made reliable enough with a high enough power density and work well in a wide enough variety of scenarios. Recent work on increasing the power density of energy harvesters has focused on improving the power electronic interface, tuning the resonant frequency of motion-driven harvesters and reducing the power consumption of the load electronics.