DocumentCode
2146394
Title
OAP: An obstruction-aware cache management policy for STT-RAM last-level caches
Author
Wang, Jue ; Dong, Xiangyu ; Xie, Yuan
Author_Institution
Pennsylvania State University, USA
fYear
2013
fDate
18-22 March 2013
Firstpage
847
Lastpage
852
Abstract
Emerging memory technologies are explored as potential alternatives to traditional SRAM/DRAM-based memory architecture in future microprocessor designs. Among various emerging memory technologies, Spin-Torque Transfer RAM (STT-RAM) has the benefits of fast read latency, low leakage power, and high density, and therefore has been investigated as a promising candidate for last-level cache (LLC)1. One of the major disadvantages for STT-RAM is the latency and energy overhead associated with the write operations. In particular, a long-latency write operation to STT-RAM cache may obstruct other cache accesses and result in severe performance degradation. Consequently, mitigation techniques to minimize the write overhead are required in order to successfully adopt this new technology for cache design. In this paper, we propose an obstruction-aware cache management policy called OAP. OAP monitors the cache to periodically detect LLC-obstruction processes, and manage the cache accesses from different processes. The experimental results on a 4-core architecture with an 8MB STT-RAM L3 cache shows that the performance can be improved by 14% on average and up to 42%, with a reduction of energy consumption by 64%2.
Keywords
Computer architecture; Degradation; Energy consumption; Microprocessors; Monitoring; Random access memory; System performance;
fLanguage
English
Publisher
ieee
Conference_Titel
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013
Conference_Location
Grenoble, France
ISSN
1530-1591
Print_ISBN
978-1-4673-5071-6
Type
conf
DOI
10.7873/DATE.2013.179
Filename
6513625
Link To Document