Title :
Large-scale flip-chip power grid reduction with geometric templates
Author_Institution :
Department of Electrical and Computer Engineering, Michigan Technological University, USA
Abstract :
Realizable power grid reduction becomes key to efficient design and verification of nowadays large-scale power delivery networks (PDNs). Existing state-of-the-art realizable reduction techniques for interconnect circuits, such as TICER algorithm, can not be well suited for effective power grid reductions, since reducing the mesh-structured power grids by TICER´s nodal elimination scheme may introduce excessive number of new edges in the reduced grids that can be even harder to solve than the original grid due to the drastically increased sparse matrix density. In this work, we present a novel geometric template based reduction technique for reducing large-scale flip-chip power grids. Our method first creates geometric template according to the original power grid topology and then performs novel iterative grid corrections to improve the accuracy by matching the electrical behaviors of the reduced template grid with the original grid. Our experimental results show that the proposed reduction method can reduce industrial power grid designs by up to 95% with very satisfactory solution quality.
Keywords :
Damping; Measurement; Power dissipation; Power grids; Resistors; Voltage control; Wires;
Conference_Titel :
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013
Conference_Location :
Grenoble, France
Print_ISBN :
978-1-4673-5071-6
DOI :
10.7873/DATE.2013.339