• DocumentCode
    21550
  • Title

    Meta-Parameter Free Unsupervised Sparse Feature Learning

  • Author

    Romero, Adriana ; Radeva, Petia ; Gatta, Carlo

  • Author_Institution
    Dept. of MAIA, Univ. de Barcelona, Barcelona, Spain
  • Volume
    37
  • Issue
    8
  • fYear
    2015
  • fDate
    Aug. 1 2015
  • Firstpage
    1716
  • Lastpage
    1722
  • Abstract
    We propose a meta-parameter free, off-the-shelf, simple and fast unsupervised feature learning algorithm, which exploits a new way of optimizing for sparsity. Experiments on CIFAR-10, STL-10 and UCMerced show that the method achieves the state-of-the-art performance, providing discriminative features that generalize well.
  • Keywords
    feature selection; unsupervised learning; CIFAR-10; STL-10; UCMerced; meta-parameter free; sparse visual feature; unsupervised sparse feature learning algorithm; Encoding; Niobium; Optimization; Sociology; Statistics; Training; Vectors; Representation learning; pre-training of deep networks; representation learning; sparse visual features; unsupervised feature learning;
  • fLanguage
    English
  • Journal_Title
    Pattern Analysis and Machine Intelligence, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0162-8828
  • Type

    jour

  • DOI
    10.1109/TPAMI.2014.2366129
  • Filename
    6942193