• DocumentCode
    2157758
  • Title

    Bifurcations of MHD DAEs at singularities

  • Author

    Marszalek, Wieslaw ; Trzaska, Zdzislaw W.

  • Author_Institution
    DeVry Univ., North Brunswick, NJ, USA
  • fYear
    2007
  • fDate
    2-5 July 2007
  • Firstpage
    3080
  • Lastpage
    3087
  • Abstract
    We analyze the traveling wave differential-algebraic equations (DAEs) in magnetohydrodynamics (MHD) and their behavior at singularities. The parameter dependent MHD DAEs may, under certain conditions, undergo the singularity induced bifurcation (SIB) when one eigenvalue of the linear model diverges through infinity. This local phenomenon may in turn signal Hopf bifurcation in the respective singularly perturbed traveling wave MHD ODEs. The qualitative analysis is based on matrix pencils and parameter dependent polynomials. Several numerical examples are given.
  • Keywords
    bifurcation; differential algebraic equations; eigenvalues and eigenfunctions; magnetohydrodynamics; matrix algebra; polynomials; Hopf bifurcation; MHD DAE; MHD ODE; eigenvalue; linear model; magnetohydrodynamics; matrix pencils; parameter-dependent polynomials; singularity-induced bifurcation; traveling wave differential-algebraic equations; Bifurcation; Eigenvalues and eigenfunctions; Indexes; Magnetohydrodynamics; Polynomials; Vectors; Differential-algebraic equations; bifurcations; magnetohydrodynamics; matrix pencils;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (ECC), 2007 European
  • Conference_Location
    Kos
  • Print_ISBN
    978-3-9524173-8-6
  • Type

    conf

  • Filename
    7068433