DocumentCode :
2161685
Title :
A generalization of Benford´s law and its application to images
Author :
Perez-Gonzalez, Fernando ; Heileman, Gregory L. ; Abdallah, Chaouki T.
Author_Institution :
Dept. Teor. de la Senal y Comun., Univ. de Vigo, Vigo, Spain
fYear :
2007
fDate :
2-5 July 2007
Firstpage :
3613
Lastpage :
3619
Abstract :
We present a generalization of Benford´s law for the first significant digit. This generalization is based on keeping two terms of the Fourier expansion of the probability density function of the data in the modular logarithmic domain. We prove that images in the Discrete Cosine Transform domain closely follow this generalization. We use this property to propose an application in image forensics, namely, detecting that a given image carries a hidden message.
Keywords :
Fourier series; discrete cosine transforms; image forensics; probability; Benford´s law generalization; Fourier expansion; discrete cosine transform domain; first significant digit; hidden message; image forensics; modular logarithmic domain; probability density function; Approximation methods; Convolution; Discrete cosine transforms; Fourier series; Histograms; Image forensics; Random variables; Benford´s law; DCT; Fourier series; forensics; watermarking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (ECC), 2007 European
Conference_Location :
Kos
Print_ISBN :
978-3-9524173-8-6
Type :
conf
Filename :
7068574
Link To Document :
بازگشت