• DocumentCode
    2178207
  • Title

    Program invariants as fixed points

  • Author

    Clarke, Edmund Melson, Jr.

  • fYear
    1977
  • fDate
    Oct. 31 1977-Nov. 2 1977
  • Firstpage
    18
  • Lastpage
    29
  • Abstract
    We argue that relative soundness and completeness theorems for Floyd-Hoare Axiom Systems ([6], [5], [18]) are really fixed point theorems. We give a characterization of program invariants as fixed points of functionals which may be obtained in a natural manner from the text of a program. We show that within the framework of this fixed point theory, relative soundness and completeness results have a particularly simple interpretation. Completeness of a Floyd-Hoare Axiom system is equivalent to the existence of a fixed point for an appropriate functional, and soundness follows from the maximality of this fixed point, The functionals associated with regular procedure declarations are similar to predicate transformers of Dijkstra; for non-regular recursions it is necessary to use a generalization of the predicate transformer concept which we call a relational transformer.
  • Keywords
    Computer languages; Computer science; Transformers;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Foundations of Computer Science, 1977., 18th Annual Symposium on
  • Conference_Location
    Providence, RI, USA
  • ISSN
    0272-5428
  • Type

    conf

  • DOI
    10.1109/SFCS.1977.25
  • Filename
    4567922